

Monitoring and Evaluation Frameworks for the Common Agricultural Policy

Project overview and agenda meeting

Overview

- Need for information on agriculture is increasing (government, sector and chain initiatives, farming)
- At the same time availability of information is increasing
- No silver bullet, one technology will not provide all answers, combinations are necessary
- MEF4CAP will connect needs with opportunities
 - Assessment of potential and limitations
 - Roadmap for future monitoring
 - and the potential of <u>different technologies</u> is fully exploited
 - while minimizing the associated cost and <u>administrative burden</u>
 - where the needs of <u>different stakeholders</u> are identified

MEF How can new technologies contribute

Background Agricultural statistics Advisory services ICT Earth observation Farm accounting Monitoring Policy evaluation Farm cooperatives Citizen organisations

Agenda: key activities

• Future monitoring and evaluation needs

- Inventory of **technological developments**
- Assess the potential of technological developments to address information needs

MEFYCAP

Thank you for your attention

Presentation by:

Hans Vrolijk

Wageningen Economic Research

hans.vrolijk@wur.nl

www.mef4cap.eu

@MEF4CAP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101000662. The content of this publication exclusively reflects the author's view and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.

Enhanced Monitoring and Evaluation for a reformed CAP

Emma Dillon & Trevor Donnellan, Teagasc

MEF Direction of the new CAP

- CAP direction influenced by **emerging sustainability agenda**
 - Global, EU, national policy drivers & various stakeholder perspectives
 - EU Farm to Fork EU Biodiversity Strategy, UN SDGs & Paris Climate Agreement
- Transformative change required changing societal expectations
 - Civil society seeking the promotion of environmental sustainability in EU policy
 - Agri-food sector seeking a slower pace for change time to adjust
- These factors have **motivated the revision of CAP objectives**
 - Environmental and Societal goals in particular

MEF Implications for monitoring & evaluation

• Shift from compliance to performance

- Compliance with actions or regulations (original approach)
- Performance, or achievement of specific objectives (new delivery model)
- MS CAP **Strategic Plans -** greater autonomy at MS level
 - But commonality with overarching EU indicator set
- Existing indicators considerable, <u>but</u>...
 - Not always fit for purpose in need of update

Additional environmental and social data a particular priority

- GHGs, biodiversity, water, organics, pesticides, fertiliser usage etc.
- Quality of life, gender issues and animal welfare etc.
- Economic data some gaps remain
 - e.g. little information on use of risk management tools

MEF HCAP Impacts for administrators & data providers

Costs and benefits

- For administrators and data providers (farmers)
- Obstacles, but also opportunities.
- These will differ across Member States.
- Increased capacity to produce relevant indicators
 - Multiple sources of agricultural data
- Evolving technology
 - For data collection, processing, management, analysis
- Potential for **improved integration** of data sources
 - e.g. IACS, FMIS, LPIS.

MEF Data utilisation

- Strong case for the **benefits of data sharing**
 - Make better use of existing data
 - Reduce collection cost and burden
 - Richer data analysis possible
- But obstacles to data integration
 - Issues around trust, sensitivity and potential legal impediments
- Policy can influence decision making at the farm level
 - Indicators should reveal farm specific differences
- **Farmer buy-in is crucial** uptake of sustainable practices
 - Data must be used in a way that returns benefits to farmers too
 - Role for farm advisory in the demonstration of such benefits

MEF Developing an Indicator Wish List

- A Wish List of indicators reflecting priority data needs
 - To fill current data gaps
- Indicator definitions are provided
 - But expert input may be required to refine these further
- Metrics are grouped into three categories
 - To reflect their principal **association with economic, social or environmental CAP objectives**
 - Some may be of relevance to more than one category multipurpose in nature
- A long list of indicators (88) further reduced to a short list (41)

MEF Refining the Wish List

- Topics have been excluded from the short list for a number of reasons:
 - Either data already exists in some form e.g. FADN;
 - A greater degree of granularity is thought unnecessary;
 - The required data may be prohibitively difficult to collect;
 - There is uncertainty over what is actually required;
 - Where the requirement is of a lesser priority or not of widespread relevance at an overall EU level.
- The wish list is assessed in WP3 on the basis of technologies identified in WP2 to develop a final list of indicators and associated technologies that might be used to produce data.
 - Emergence of a roadmap for the collection of relevant data for CAP monitoring and evaluation.

	-0-	
Е	•	
L D		
L.		

- Environmental metrics a key priority area
- A number of important themes identified in Farm to Fork

Table 12: Greenhouse Gases per Farm

Farm Level GHGs		
Environmental		
GHGs produced per farm		
Tonnes of CO₂ eq. per farm		
Total farm GHGs in tonnes / farm		
Farm level		
National, regional, farm level		
Annual		
4. Agriculture & Climate Mitigation		
High		

research and innovation programme under grant agreement No. 10 The content of this publication exclusively reflects the author's view Research Executive Agency and the Commission are not responsible

- A need for more holistic measures of sustainability around broad ranging societal concerns.
- Human, animal and (rural) community aspects.

Table 39: Use of Veterinary Antimicrobials in EU Animal Husbandry

Indicator Name	Use of Veterinary Antimicrobials in EU Animal Husbandry
Type of Indicator	Social
Definition	Frequency of use of medicines on farms
Unit of Measurement	Amount of medicines delivered by animal
Methodology/Formula	N/A
Data Collection Level	Farm level
Data Reporting Level	National, regional, farm level
Frequency	Annual
CAP Objective	9. Health, Food & Anti-microbial Resistance

- Economic dimension relatively well established, although:
 - Further detail required in some instances, and;
 - Newly emerging areas of interest need should be considered.

Table 6: Use of Forward Pricing

+	
Indicator Name	Use of Forward Pricing of Farm Output
Type of Indicator	Economic
Definition	Share of farm output by volume that is forward sold
Unit of Measurement	Percentage of output
Methodology/Formula	Volume of farm output forward sold / total farm output
Data Collection Level	Farm level
Data Reporting Level	National, regional, farm level
Frequency	Annual
CAP Objective	3. Strengthening Farmers' Position in Value Chains
Proposed Prioritisation	High

MEF Conclusion

- Sustainability now firmly embedded in CAP
 - Environmental focus will be especially critical
- New Delivery Model
 - New obligations and opportunities for data administrators and providers
- Data will demonstrate the direction for agricultural sustainability
 - Emerging technological solutions can assist
 - Farm level dimension is crucial
 - Decisions to change farm practices are taken by farmers
- Preliminary Indicator Wish List
 - Further assessed in the context of identified feasible technologies

MEFUCAP

Presentation by: Emma Dillon, Teagasc <u>Emma.Dillon@teagasc.ie</u>

www.mef4cap.eu

@MEF4CAP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101000662. The content of this publication exclusively reflects the author's view and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.

Online workshop 4th March, 9:30 – 11:30 CET

Exploring new data and technologies to measure sustainability in agriculture Nikos Kalatzis – NEUROPUBLIC

Sokratis Kaprelis – NEUROPUBLIC

MEF Promising technologies as new sources of data for monitoring and evaluation Workflow of "WP2 ICT Developments"

- Objective: To identify and assess digital agri technologies useful for CAP monitoring and evaluation
- 1. State of the art review of technologies and assessment in the context of CAP monitoring
 - Legacy, Current, Future
- 2. Review of **agri data models** and **agri data sharing approaches**
- 3. Continuous **monitoring** and **collaboration** with related **EU initiatives and projects**
- 4. Analysis of selected cases of best practices on agri-tech utilisation serving also CAP Monitoring and Evaluation

MEF Promising technologies as new sources of data for monitoring and evaluation List of technologies evaluated

- Telecommunication technologies
- Field Sensors
- Farm Management Information systems (FMIS)
- Field Machinery
- Earth Observation
- Livestock Management
- Pasture Management
- Financial management

MEF
HCAPPromising technologies as new sources of
data for monitoring and evaluation
Agricultural data sharing and data models

Experts from different disciplines setting up the **rules** and **mechanism** for **fair** and **responsible** agricultural data sharing on EU level

 Farmers, farmers associations, data scientists, regulatory bodies, legal experts, information security officers

>European Strategy for Data

- EU Initiative for Common European data spaces targeting various sectors including Agriculture
- Legislative measures on data governance, access and reuse \rightarrow users to stay in control of their data

≻GAIA X – Agri Gaia

 Aims to create an ecosystem for the SME on agricultural and food industry based on GAIA-X data sharing mechanisms

>FAO-UN on farm data management and sharing

MEFPromising technologies as new sources of
data for monitoring and evaluation
Collaboration activities with selected EU projects

- H2020 DEMETER: Building an Interoperable, Data-Driven, Innovative & Sustainable European Agri-Food Sector
- H2020 ENVISION: Monitoring of Environmental Practices for Sustainable Agriculture Supported by Earth Observation
- H2020 DIONE: Advanced monitoring for modernising CAP
- H2020 MIND STEP: Modelling Individual Decisions to Support the European Policies Related to Agriculture
- H2020 NIVA: New IACS Vision in Action
- CONNECTING EUROPE FACILITY (CEF) "Open IACS: Open LOD platform based on HPC capabilities for Integrated Administration of Common Agriculture Policy"
- FaST: Farm Sustainability Tool

Overall outcome: Mainly Earth Observation based data products, efforts for integrating in situ data, interoperability, regulation

MEF
HCAPPromising technologies as new sources of
data for monitoring and evaluation

Key outcome: Convergence of smart agriculture practices with policy monitoring and evaluation

Digital agricultural technologies can concurrently serve two objectives:

- ➤ Implementation of optimised and sustainable agricultural practices → clear benefits for farmers, climate, ecosystems
- Provision of farm level ground truth evidences of applied agricultural practices
 support for CAP monitoring and evaluation

MEFPromising technologies as new sources of
data for monitoring and evaluation
High level outcomes on agricultural technologies (I)

Technology/solution	Agricultural practices	CAP M&E		
Earth Observation	Intra field zoning Monitor crop growth stages (e.g. NDVI) Moisture/Irrigation monitoring (e.g. NDWI) Soil quality Grass biomass and grass growth rate	Crop type identification Crop rotation Cultivation activities Pasture management		
FMIS, farm book, farmers digital calendar (combined with IoT)	Pesticides applications Fertilization applications Irrigation applications Phenological growth stages	Evidences related with PPP monitoring Evidences related with Nitrates monitoring Evidences on water use Evidences on crop type		
Geotagged photos of cultivation	Recording and identifying: Crop type, growth stage, disease, remote provision of advice	Crop type identification (especially for small parcels or crops not detected by satellite images)		

MEF
HIGHPromising technologies as new sources of
data for monitoring and evaluation
High level outcomes on agricultural technologies (II)

Technology/solution	Agri production	CAP M&E
Farm machinery (tractor) automations	Optimization of inputs (fertilizers/pesticides/seeds) through Variable Rate Application	Ground truth evidence of applied chemicals (date, parcel, volume and type of chemical applied, nitrates monitoring)
Pasture monitoring (in situ data sources) Paddock Recording, Automated plate metering	Grass covers measurements, grass biomass, silage production, grazing times, grass growth prediction models	Grazing intensity, Grasslands monitoring
Animal behaviour sensing technologies & Herd management book keeping	Animal movement, Lameness Detection, Heat Detection, Grazing detection, cow localization, Rumen Condition, Enviromental conditions	Number of animals, Type of animals, consumed inputs (water, food, medicine), GHGs Emissions
Accountancy data – elnvoices	Monitoring and management of production materials Purchase and sales data (paper invoices, self- created bills, dispatch notes)	Evidences on purchased inputs (chemicals, seeds, fuel) Sustainability report (including material balances)

MEFPromising technologies as new sources of
data for monitoring and evaluation
Example: Farm level data monitoring through agricultural decision support systems

FMIS – IoT based data-driven advisory services

Combination of Technologies	Benefits for the farmers	Benefits for CAP Monitoring & Evaluation
Earth Observation data	Optimised used of inputs (plant protection products, fertilisers, irrigation, fuel)	Applied inputs: irrigation/ pesticides /fertilisers on a field
IoT sensors	Reduced environmental impact/better farm performance	level. Crop type, parcel
Decision models Data analytics	Automated documentation of activities	location, dates, yield

Open issues:

- Farm calendar with manually entries may also introduce inaccurate data (un)intentionally.
- Farmers' acceptance on data sharing is still an issue
- Sharing of FMIS generated logs already integrated in certification audits e.g. GlobalGAP
- Interoperability

MET Solution Promising technologies as new sources of data for monitoring and evaluation Example: Variable Rate Application technologies and monitoring of applied phytochemicals

	projected task			
		Technologies	Benefits for the farmers	Benefits for CAP Monitoring & Evaluation
task planning	task processing	Remote sensing for scanning the	Optimised use of inputs (agrochemicals, seed,	Farm level digital evidences of applied
		field/canopy of	fuel)	inputs (PPPs, seeds,
		plants		fuel)
			Reduced environmental	
task documentation		Field zoning algorithms	impact	Increased transparency of
			Reduced cost for	applied practices
		Variable Rate	farmers	useful also for food
		Application sprayers		retailers/processors
	finished task with log data		Automated	
		Satellite navigation	documentation of	
Open issues:		systems	activities	

- Interoperability and connectivity issues. There is still no command approach for communicating generated ISOXML datasets with third parties.
- No mechanisms to verify the actual composition of the inputs (fertilisers, pesticides, seeds)
- Penetration and utilisation of VRA enabled farm machinery is rather low in EU countries where small and fragmented farms are the majority (e.g. South Europe).

MEF Promising technologies as new sources of data for monitoring and evaluation

High Level Outcomes

There is no one-fits-all technological approach to support CAP Monitoring & Evaluation

- A combination of different technologies that are able to interact is necessary
- Increased heterogeneity needs to be addressed

>CAP M&E and optimised farming practices can both be supported by agri-tech

- >The way forward: Landscape monitoring
 - Aggregation of information on regional bases generates additional data products and knowledge
 - Area/region based sustainability performance monitoring
 - Support for policy makers and policy monitoring Incentivize farmers to share data

IEFF CAP Promising technologies as new sources of data for monitoring and evaluation Deliverables' description of WP2 – ICT

Developments

D2.1 - Landscape of agri-food ICT technologies within EU (submitted)

D2.2 - Best practices on the adoption of ICT agricultural technological

solutions (submitted)

D2.3 - Identified new technological opportunities from collaboration with EU projects and initiatives (submitted)

D2.4 - Emerging ICT technologies for the agricultural domain (ongoing)

There will be public soon.

MEFUCAP

Thank you for your attention

Nikos Kalatzis NEUROPUBLIC S.A. n_kalatzis@neuropublic.gr

www.mef4cap.eu

@MEF4CAP

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101000662. The content of this publication exclusively reflects the author's view and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.

MEF4CAP EU Level Workshop WP 3: Current system and future pathways

Alberto Gutiérrez García - David A. Nafría García

4 March 2022

MEF WP3 Current system and future pathways HCAP Objectives

- Identify **potential solutions** to meet the data requirements for the Common Agriculture Policy Monitoring and Evaluation.
- Identify and define the most promising **pathways** to achieve the detected data needs for each indicator.

Pathway is a combination of several data sources and/or technologies that ease the computation of the indicator's metric

MEFWP3 Current system and future pathwaysGAPStructure

Task 3.1: Review of current monitoring systems -> Deliverable 3.1

Task 3.2: Potential of current systems and ICTdevelopments for future data needs -> Deliverable 3.2

Task 3.3: Identification of potential pathways for5in the monitoring and evaluation framework for6in the monitoring and evaluation framework for6in the monitoring and evaluation framework for6in the monitoring and evaluation framework for7in the monitoring and evaluation framework for8in the monitoring and evaluation framework for9in the monitorin

MEFWP3 Current system and future pathwaysHCAPTask 3.1: Review of current monitoring systems - Conclusion

Regarding CMEF:

- EC highlights the impact of the timing and frequency of data (indicators) availability.
- Data gaps to characterize the real effects of the Policy mainly regarding environment.
- Little detail on information at parcel/farm level.

Statistical Databases used in CMEF

- Follow statistical methodologies on sampling and aggregation ->
 (+)Robustness; (-)Burden.
- Based on samples of the whole population of farmers in the EU -> (+)Beyond CAP beneficiaries; (-)Bias commercial farms.
- Typically collect information related with accountancy.

Administrative Databases used in CMEF

- Data from all individual farmers applying for CAP aids -> (+)Include small farms; (-)Trustable.
- Information on the requirements to obtain subsidy.

WP3 Current system and future pathways Task 3.2: Potential of current systems and ICT developments for future data needs

- Bring together the needs detected in WP1 (indicators) and the ICT developments analyzed in WP2 to make a judgement on the potential of each ICT solution to derive data for an specific indicator.
- Practically this will be a **matrix** whose rows represent the indicator's metric and columns show the data provided by a specific technology.
- Each combination will be evaluated in terms of **potential**:
 - ✓ <u>Proven technology</u>: Technology does provide data for the indicator requirements
 - ✓<u>No potential</u>: Technology does not provide data for indicator's requirements
 - ✓ <u>Some potential</u>: Technology provides with data but still some work is needed to address the indicator requirements.

WP3 Current system and future pathways Task 3.2: Potential of current systems and ICT developments for future data needs

MEFWP3 Current system and futureHCAPpathways

EXAMPLES

MEFWP3 Current system and future pathwaysHCAPTechnologies

Data need		Earth Observation <u>Source</u>		Digital Soil Mapping	Paddock Manag. Grass cover		Crop monitoring Source - FMIS Records of
<i>Indicator</i> : Carbon Seq. <u>Metric</u> : CO ₂ eq/ha		 Land cover + biomass Spectral soil modeling <u>Requirements</u> ML algorithm Agri. Data Model CO₂ seq. ~ veg. cover 	-	Soil properties records (samples) Soil properties maps Requirements Geostatistics Environmental and EO data covariates Data Sharing	 Source Grass cover records Requirements CO₂ seq. ~ Grass cover Agri. Data Model Data Sharing GDPR Compliance 		crop type, tillage practices, yield, residues and manure. - Environmental data Requirements - Crop models - Agri. Data Model - Data sharing - GDPR Compliance
Dathway							

PULIN

MEF pathways Technologies

Data need Indicator: Pesticide Use Metric: To be defined

Machinery

<u>Source</u>

- Records of the volume of pesticide applied <u>Requirements</u>

- Agri. Data Model
- Data sharing

Farm Management Systems Source - Records in digital farm book <u>Requirements</u> - Agri. Data Model - Data sharing or IACS integration - GDPR compliance

Pathway

MEF WP3 Current system and future pathways **HCAP**

Machinery (FMIS)

- Records of working hours

- Records of GNSS tracks

- Records ISOBUS TC-BAS

(fertilizer and manure

- Input (kg)~ CO2 equiv.

- Records of fuel

consumption

<u>Requirements</u>

- Agri. Data Model

Track recording

Source

volume)

Data need Indicator: Farm GHGs GHGs per ha <u>Metric</u>: T of CO2 Eq./farm T of CO2 Eq/ha

Technologies

EO and Crop monitoring

Source

Records of crop type

<u>Requirements</u>

- ML algorimth
- GHG emission ~ Crop type
- Agri. Data model
- Data sharing

Herd Management

Source

- CH₄ emmision based on the # of animals and feed <u>Requirements</u>

- CH₄ emision ~ #of animals
- Agri. Data Model
- Data sharing
- GDPR compliance

Pathway

MEF WP3 Current system and future pathways Yechnologies

Data need

<u>Indicator</u>: Farm landscape features and their loss <u>Metric</u>: Number of farmland features relative to previous period

Earth Observation <u>Source</u>

- Land cover features identification/change. VHR images.

<u>Requirements</u>

Definition of the minimun
size of the features
ML algorithms

Geo-tagged photos

<u>Source</u>

- IACS

<u>Requirements</u>

- Adoption of model for data sharing
- Data sharing compliance with GDPR

Pathway

MEFHCAP

Thank you for your attention

Presentation by: Alberto Gutiérrez García ITACyL

Ita-gutgaral@itacyl.es

www.mef4cap.eu

* * * * * * *

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101000662. The content of this publication exclusively reflects the author's view and the Research Executive Agency and the Commission are not responsible for any use that may be made of the information it contains.